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ABSTRACT 

The limiting distribution of the regression 
coefficients calculated from a correlation matrix 
that has been corrected for attenuation is ob- 
tained. Methods of estimating the covariance 
matrix of the vector of regression coefficients 
are presented. Nonnormal regression variables 
and nondiagonal error matrices are considered. 
The procedures are illustrated with data on the 
socioeconomic career. 

1. INTRODUCTION 

The effect of measurement error upon esti- 
mated regression coefficients has long been rec- 
ognized. Cochran t57, Johnston [9], Walker and 
Lev [16] and Wiley [18] are recent references re- 
porting the distortions that are introduced into 
standard regression statistics when the indepen- 
dent variables are measured with error. In a 
regression with a single independent variable the 
regression coefficients, on average, are reduced 
in absolute value, attenuated, when compared to 
those computed in the absence of measurement 
error. The same is true of the correlation co- 
efficients. 

In some areas it is possible to obtain good 
estimates of the ratio of the measurement error 
variance to the total variance. If the measure- 
ment errors in different independent variables 
are uncorrelated, the estimated variance ratios 
can be used to adjust the observed correlation 
matrix to construct an estimate of the correla- 
tion matrix one would obtain in the absence of 
measurement errors. The resulting estimated cor- 
relation matrix is said to have been corrected 
for attenuation. Regression equations can then 
be estimated from the correlation (or covariance) 
matrix corrected for attenuation. Although the 
method has been extensively used in the social 
sciences, little discussion of the sampling prop- 
erties of the estimators is available (see 

Bohrnstedt and Carter C37). 

In this paper we derive the limiting distri- 
bution for the correction for attenuation esti- 
mator for both the uncorrelated and correlated 
measurement error cases, We also demonstrate how 
the standard error of the regression coefficients 
can be estimated when the error and (or) the true 
values have an arbitrary distribution with finite 
fourth moments. 

The distributional results are illustrated 
using the causal chain model for the socioeco- 
nomic career discussed by Featherman [6] and 
Kelley [12]. 

2. MODEL AND ESTIMATION 

We write the model as 
Y = x + e 

X = x + u (2.1) 
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where Y is an n x l vector, x is an n x k matrix, 

and is a k x l vector. The vector Y and the 

matrix X are observed and an estimator of is 

desired. The matrix u is the matrix of measure- 

ment errors. We shall utilize the following 
assumptions: 

( i) The vectors of errors (et, t =1, 

2,..., where ut is the tth row of are dis- 

tributed as normal independent random variables 
with zero mean and covariance matrix 

ae u 

Le Lu 
= diag(aé, 

( ii) The distribution of (ej, is in- 

dependent of that of for all t, j where is 

the tth row of x . 

(iii) The t = 1,2,...,n, are distrib- 

uted as normal independent random variables with 
mean 0 nonsingular covariance matrix 

The reader will note that we have lost no 
generality in assuming the mean of the xt to be 

zero. If the mean is unknown we make an orthog- 
onal transformation to reduce the problem to the 
stated form. In practice one uses the corrected 
sums of squares and products in the analysis when 
the mean in unknown. If an independent variable 
is measured without error, then = 0 for that 

variable. 

Since and ut are normally distributed it 

follows that Xt = + ut, t = 1,2,...,n are dis- 

tributed as normal independent random variables 
with mean zero and nonsingular covariance matrix 

= Lu It is also assumed that: 

( iv) The ratios Xi, i = 1,2,...,k, of error 

variance to total variance , where is 

the element of and is the 
i 

diagonal element of &x, are known. 

The quantity (1 -Xi) is called the relia- 

bility of the ith variable. We denote the diag- 
onal matrix of ratios by 

= diag(X1, X2, Xk) . (2.2) 

We define the correction for attenuation 

estimator of by 

= H 1(n l X' Y) , (2.3) 

where 



, if 1+ n-1 

= 

- (f 1)DA D , if f < 1 + n-1 

diag(sxi, ..., ) 

n 

i 

X2 n 
t=1 Xti 

A 

f is the smallest root of 
- =0, 

Y'Y Y'X 

X'X 

, T 

s n-1 

G = 

diag(0, 
X2, ., Xk) if the reliability 

of Y is unknown 

diag(X " Xk) if the reli- 
ability of Y is 
known and de- 
noted by ee 

The slight modification introduced by the 

calculation of 
A 
f that the matrix H to 

be inverted is always positive definite, and that 
the estimated covariance matrix of the true vari- 
ables is positive definite. In practice, if one 

A 
obtains a small f one should invests ate the hy- 
pothesis that the covariance matrix is sin - 

guiar by computing the smallest root of 

=0. 
A 

If is not significantly different from one, it 

may be desirable to modify the model by reducing 
the dimension of X By the results of Fuller 

[7], the distribution of (n -k)f is approximately 
that of a chi -square random variable with n -k 
degrees of freedom when the rank of (x:y)'(x:y), 

where y = x , is k and the reliability of Y is 
A 

known. Similarly, (n- k +1)2, is approximately dis- 
tributed as a chi -square random variable with 
n -k +l degrees of freedom when the rank of x'x is 
k -1 . 

Theorem 1: Let model (2.1) and assumptions 
(i) through hold. Then 

- ß) > N(0, ) 

where the element of the matrix C is 
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2x1 
aX. - 

+ 

and E 
u. 

i=1 

Proofs of the theorems may be obtained by 
writing the authors for the complete manuscript. 

A 

The covariance matrix of is estimated by 

replacing the parameters by their estimates, 

where is estimated by 

n 
= k 

x)2 

H is an estimator of , n 
-1 

X'X furnishes esti- 

mators of ' and Xt is the tth row of the 

matrix X . 

In the computations sums of squares cor- 
rected for the mean will typically be used 
throughout. If an intercept term is computed for 
the regression, 

0 = - , 

the variance of the estimated intercept can be 
estimated by 

-1 = n s + C X, 

where X' = (X1, X2, ..., C is the esti- 

mator of C . 

The form of the covariance matrix obtained 
in Theorem was a function of the moment prop- 
erties of the normal distribution. However, the 
fact that the estimator converged in distribution 
to a normal random variable required only inde- 
pendence of the observations and the existence of 
certain moments. Therefore, we can extend the 
procedure to nonnormal distributions. We also 
relax the assumption that the covariance matrix 
of the measurement errors is diagonal. We make 
the assumptions: 

( v) The vectors (et, t = 1,2,..., 

are independently and identically distributed 
with 

Efet, ut} = 0 

E[xt] = 

E[(et, ut)] = 

- - = 

(et, = 0' 

and finite fourth moments, where &pc is non- 

singular. 



where 

(vi) The matrices Aeu and Auu are known, 

X 

ee 

-1 -1 

= , , 

1 2 

The estimator analogous to that defined in 
(2.3) is 

= 
-1 - 

sY) , (2.5) 

where and D are defined below equation (2.3) 

with replacing and replacing G. If Xee 

is unknown it is set equal to A A -1 A in the ue 
calculation of f . 

Theorem 2: Let model (2.1) with assumptions 
(v) and (vi) hold. Then 

n - ) > N(0, A) , 

where 

A = EN dt) 

= 
dt2, dtk) 

1 
- 

ti 

1 

+ 

Xti is the tith element of X, is the tth 

element of v, and 
e 

is the ith element of 
i 

The form of the result presented in Theorem 
2 suggests an estimator of the variance of that 
is relatively easy to compute. 

Theorem 1: Let model (2.1) with assumptions 

PI-1, (v) and (vi) hold. Then H -1 A H 1, where 

n 
A = (n -k) 

-1 
dt , 

t =1 

= dt2, 
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s 

ti = Xti vt - ulesX Xti sy t 
L 

sX. 

jE uiuj 
j 

A k 
vt = Xt 

is a consistent estimator of the covariance 

matrix of the limiting distribution of n(ß - 

3. 

To illustrate the computations associated 
with the correction for attenuation, we use some 
data studied by Featherman [6] and Kelley [12]. 
(See also the Comments section of The American 
Sociological 1973, p. 785 The data 
were kindly made available by Professor Feather- 
man. The data pertain to the careers of 715 
white native American urban married males. The 
reader is referred to the cited articles for a 
complete description of the data. Two of the 
several equations estimated in the original 
studies are: 

Q3 = ß2T 
+ + 

Q2 = a1QF + a2T "411 
where 

Q. i = 1,2,3 is occupation at time i, where 
i = 1 is at marriage, time 2 is 
about eight years after marriage and 
time 3 is about sixteen years after 
marriage. 

is father's occupation 

T is years of formal education 

I1 is income in thousands of dollars at 
time one. 

Occupation is recorded on an eleven point scale 
based upon the 1947 National Opinion Research 
Center study [13]. 

Kelley gave the reliabilities for the vari- 
ables as 0.718 for father's occupation, 0.933 for 
education, 0.861 for occupation, and 0.852 for 
income. 

Considerable interest centered on the co- 
efficients and x4. Under one theoretical 

model both of these coefficients were hypoth- 
esized to be zero. Estimates of the two equa- 
tions are given below. 

Q3 = + 0.137T - + o.661Q2 

(0.040) (0.035) (0.074) (0.085) 

(0.043) (0.034) (0.078) (0.091) 



= o.080QF + o.176T + 0.651Q1 - 0.09711 

(0.036) (0.038) (0.040) (0.030) 

(0.034) (0.034) (0.054) (0.026) 

The first set of numbers in parentheses are 
the estimated standard errors computed under the 
assumption of normality. The second set are the 
estimated standard errors computed under the 
more general assumptions. The coefficients are 
reported in the original units. Also the method 
used to treat missing values differed from that 
used by Featherman. Therefore, the coefficients 
are not identical to those reported by Feather- 
man and Kelley. From a substantive viewpoint 
the coefficient for Q1 in equation one could 

easily be zero. However, if one accepts the 
assumptions it is very unlikely that the coef- 
ficient for income in the second equation is 

zero. 

The variables are clearly not normal because 
all are restricted to a few integer values. 
Procedures based on normality gave estimated 
standard errors very similar to those obtained 
under the more general assumptions for the first 
equation. On the other hand, the estimated stan- 
dard error for Q1 in the second equation computed 

under the normal assumption is quite different 
from that computed under the more general assump- 
tions. 

The joint distribution of Q2 and Q1 deviates 

considerably from normality. For example, the 
residuals from the ordinary regression of Q2 on 

Q1, say 6, have a coefficient of skewness of 

0.34 and a kurtosis of 3.32. The approximate 
standard errors of these quantities, under nor- 
mality, are 0.09 and 0.18, respectively. There 

is also considerable evidence that the condi- 
tional mean of Q2 given Q1 is not linear, the t 

statistic for the quadratic term in a regression 
of Q2 on Q1 and being 6.7. Also the condi- 

tional variance of given Q1 is not constant, 

the regression of the squared regression resid- 

uals, on Q1 and give an F- statistic of 

30.8 with two and 712 degrees of freedom. 

Because of the robustness of the general pro- 
cedure it is recommended unless the sample size 
is very small 
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